Novel isatin-based hydroxamic acids as histone deacetylase inhibitors and antitumor agents

European Journal of Medicinal Chemistry
2013.0

Abstract

Accumulated clinical studies have demonstrated that histone deacetylase (HDAC) inhibitors show great potential for the treatment of cancer. SAHA (Vorinostat, trade name Zolinza) was approved by the FDA in 2006 for the treatment of the cutaneous manifestations of cutaneous T-cell lymphoma. As a continuity of our ongoing effort to identify novel small molecules targeting these important enzymes, we designed and synthesized two series of isatin-3'-oxime- and isatin-3'-methoxime-based hydroxamic acids (3a-g and 6a-g) as analogues of SAHA. Generally in both series it was found that, compounds bearing no substituent or with 5'-F, 5'-Cl, 7'-Cl substitutents on the isatin moiety exhibited good inhibition against histone-H3 and histone-H4 deacetylation at the concentrations of 1 μM, as evaluated by Western Blot assay. The compounds also displayed potent cytotoxicity against five cancer cell lines with IC50 values of as low as 0.08 μM, more than 45-fold lower than that of SAHA. Docking study performed with selected compounds 3a and 6a revealed that these compounds bound to HDAC8 with higher affinities compared to SAHA. Compounds 3a and 6a also bound to HDAC2 at the binding site with high binding affinity. These findings should encourage further elaboration with the isatin moiety to produce more potent HDAC inhibitors with potential anticancer activity.

Knowledge Graph

Similar Paper

Novel isatin-based hydroxamic acids as histone deacetylase inhibitors and antitumor agents
European Journal of Medicinal Chemistry 2013.0
Benzothiazole-containing hydroxamic acids as histone deacetylase inhibitors and antitumor agents
Bioorganic & Medicinal Chemistry Letters 2011.0
Design, synthesis and preliminary bioactivity studies of 1,2-dihydrobenzo[d]isothiazol-3-one-1,1-dioxide hydroxamic acid derivatives as novel histone deacetylase inhibitors
Bioorganic & Medicinal Chemistry 2014.0
Novel Inhibitors of Human Histone Deacetylases:  Design, Synthesis, Enzyme Inhibition, and Cancer Cell Growth Inhibition of SAHA-Based Non-hydroxamates
Journal of Medicinal Chemistry 2005.0
Aminosuberoyl hydroxamic acids (ASHAs): A potent new class of HDAC inhibitors
Bioorganic & Medicinal Chemistry Letters 2007.0
Design and synthesis of a new generation of substituted purine hydroxamate analogs as histone deacetylase inhibitors
Bioorganic & Medicinal Chemistry 2016.0
Design, synthesis, and evaluation of biphenyl-4-yl-acrylohydroxamic acid derivatives as histone deacetylase (HDAC) inhibitors
European Journal of Medicinal Chemistry 2009.0
Development of Tetrahydroisoquinoline-Based Hydroxamic Acid Derivatives: Potent Histone Deacetylase Inhibitors with Marked in Vitro and in Vivo Antitumor Activities
Journal of Medicinal Chemistry 2011.0
2-Aroylindoles and 2-Aroylbenzofurans with N-Hydroxyacrylamide Substructures as a Novel Series of Rationally Designed Histone Deacetylase Inhibitors
Journal of Medicinal Chemistry 2007.0
Development of N-Hydroxycinnamamide-Based Histone Deacetylase Inhibitors with an Indole-Containing Cap Group
ACS Medicinal Chemistry Letters 2013.0