Aminoadamantanes with Persistent in Vitro Efficacy against H1N1 (2009) Influenza A

Journal of Medicinal Chemistry
2014.0

Abstract

A series of 2-adamantanamines with alkyl adducts of various lengths were examined for efficacy against strains of influenza A including those having an S31N mutation in M2 proton channel that confer resistance to amantadine and rimantadine. The addition of as little as one CH2 group to the methyl adduct of the amantadine/rimantadine analogue, 2-methyl-2-aminoadamantane, led to activity in vitro against two M2 S31N viruses A/Calif/07/2009 (H1N1) and A/PR/8/34 (H1N1) but not to a third A/WS/33 (H1N1). Solid state NMR of the transmembrane domain (TMD) with a site mutation corresponding to S31N shows evidence of drug binding. But electrophysiology using the full length S31N M2 protein in HEK cells showed no blockade. A wild type strain, A/Hong Kong/1/68 (H3N2) developed resistance to representative drugs within one passage with mutations in M2 TMD, but A/Calif/07/2009 S31N was slow (>8 passages) to develop resistance in vitro, and the resistant virus had no mutations in M2 TMD. The results indicate that 2-alkyl-2-aminoadamantane derivatives with sufficient adducts can persistently block p2009 influenza A in vitro through an alternative mechanism. The observations of an HA1 mutation, N160D, near the sialic acid binding site in both 6-resistant A/Calif/07/2009(H1N1) and the broadly resistant A/WS/33(H1N1) and of an HA1 mutation, I325S, in the 6-resistant virus at a cell-culture stable site suggest that the drugs tested here may block infection by direct binding near these critical sites for virus entry to the host cell.

Knowledge Graph

Similar Paper

Aminoadamantanes with Persistent in Vitro Efficacy against H1N1 (2009) Influenza A
Journal of Medicinal Chemistry 2014.0
Binding and Proton Blockage by Amantadine Variants of the Influenza M2<sub>WT</sub> and M2<sub>S31N</sub> Explained
Journal of Medicinal Chemistry 2017.0
Discovery of Novel Dual Inhibitors of the Wild-Type and the Most Prevalent Drug-Resistant Mutant, S31N, of the M2 Proton Channel from Influenza A Virus
Journal of Medicinal Chemistry 2013.0
Discovery of Highly Potent Inhibitors Targeting the Predominant Drug-Resistant S31N Mutant of the Influenza A Virus M2 Proton Channel
Journal of Medicinal Chemistry 2016.0
Unraveling the Binding, Proton Blockage, and Inhibition of Influenza M2 WT and S31N by Rimantadine Variants
ACS Medicinal Chemistry Letters 2018.0
Easily Accessible Polycyclic Amines that Inhibit the Wild-Type and Amantadine-Resistant Mutants of the M2 Channel of Influenza A Virus
Journal of Medicinal Chemistry 2014.0
Synthesis and Antiviral Activity Evaluation of Some New Aminoadamantane Derivatives. 2
Journal of Medicinal Chemistry 1996.0
Slow but Steady Wins the Race: Dissimilarities among New Dual Inhibitors of the Wild-Type and the V27A Mutant M2 Channels of Influenza A Virus
Journal of Medicinal Chemistry 2017.0
Exploring the Size Limit of Templates for Inhibitors of the M2 Ion Channel of Influenza A Virus
Journal of Medicinal Chemistry 2011.0
Interaction of aminoadamantane derivatives with the influenza A virus M2 channel-Docking using a pore blocking model
Bioorganic &amp; Medicinal Chemistry Letters 2010.0