Easily Accessible Polycyclic Amines that Inhibit the Wild-Type and Amantadine-Resistant Mutants of the M2 Channel of Influenza A Virus

Journal of Medicinal Chemistry
2014.0

Abstract

Amantadine inhibits the M2 proton channel of influenza A virus, yet most of the currently circulating strains of the virus carry mutations in the M2 protein that render the virus amantadine-resistant. While most of the research on novel amantadine analogues has revolved around the synthesis of novel adamantane derivatives, we have recently found that other polycyclic scaffolds effectively block the M2 proton channel, including amantadine-resistant mutant channels. In this work, we have synthesized and characterized a series of pyrrolidine derivatives designed as analogues of amantadine. Inhibition of the wild-type M2 channel and the A/M2-S31N, A/M2-V27A, and A/M2-L26F mutant forms of the channel were measured in Xenopus oocytes using two-electrode voltage clamp assays. Most of the novel compounds inhibited the wild-type ion channel in the low micromolar range. Of note, two of the compounds inhibited the amantadine-resistant A/M2-V27A and A/M2-L26F mutant ion channels with submicromolar and low micromolar IC50, respectively. None of the compounds was found to inhibit the S31N mutant ion channel.

Knowledge Graph

Similar Paper

Easily Accessible Polycyclic Amines that Inhibit the Wild-Type and Amantadine-Resistant Mutants of the M2 Channel of Influenza A Virus
Journal of Medicinal Chemistry 2014.0
3-Azatetracyclo[5.2.1.1<sup>5,8</sup>.0<sup>1,5</sup>]undecane Derivatives: From Wild-Type Inhibitors of the M2 Ion Channel of Influenza A Virus to Derivatives with Potent Activity against the V27A Mutant
Journal of Medicinal Chemistry 2013.0
Exploring the Size Limit of Templates for Inhibitors of the M2 Ion Channel of Influenza A Virus
Journal of Medicinal Chemistry 2011.0
Slow but Steady Wins the Race: Dissimilarities among New Dual Inhibitors of the Wild-Type and the V27A Mutant M2 Channels of Influenza A Virus
Journal of Medicinal Chemistry 2017.0
Discovery of Novel Dual Inhibitors of the Wild-Type and the Most Prevalent Drug-Resistant Mutant, S31N, of the M2 Proton Channel from Influenza A Virus
Journal of Medicinal Chemistry 2013.0
Novel spirothiazamenthane inhibitors of the influenza A M2 proton channel
European Journal of Medicinal Chemistry 2016.0
Identification of camphor derivatives as novel M2 ion channel inhibitors of influenza A virus
MedChemComm 2015.0
Imidazole-based pinanamine derivatives: Discovery of dual inhibitors of the wild-type and drug-resistant mutant of the influenza A virus
European Journal of Medicinal Chemistry 2016.0
New polycyclic dual inhibitors of the wild type and the V27A mutant M2 channel of the influenza A virus with unexpected binding mode
European Journal of Medicinal Chemistry 2015.0
Synthesis and Antiviral Activity Evaluation of Some New Aminoadamantane Derivatives. 2
Journal of Medicinal Chemistry 1996.0