Novel spirothiazamenthane inhibitors of the influenza A M2 proton channel

European Journal of Medicinal Chemistry
2016.0

Abstract

The development of treatments for influenza that inhibit the M2 proton channel without being susceptible to the widespread resistance mechanisms associated with the adamantanes is an ongoing challenge. Using a yeast high-throughput yeast growth restoration assay designed to identify M2 channel inhibitors, a single screening hit was uncovered. This compound (3), whose structure was incorrectly identified in the literature, is an inhibitor with similar potency to amantadine against WT M2. A library of derivatives of 3 was prepared and activity against WT M2 and the two principal mutant strains (V27A and S31N) was assessed in the yeast assay. The best compounds were further evaluated in an antiviral plaque reduction assay using engineered WT, V27A and S31N M2 influenza A strains with otherwise identical genetic background. Compound 63 was found to inhibit all three virus strains in this cell based antiviral assay at micromolar concentrations, possibly through a mechanism other than M2 inhibition.

Knowledge Graph

Similar Paper

Novel spirothiazamenthane inhibitors of the influenza A M2 proton channel
European Journal of Medicinal Chemistry 2016.0
Easily Accessible Polycyclic Amines that Inhibit the Wild-Type and Amantadine-Resistant Mutants of the M2 Channel of Influenza A Virus
Journal of Medicinal Chemistry 2014.0
3-Azatetracyclo[5.2.1.1<sup>5,8</sup>.0<sup>1,5</sup>]undecane Derivatives: From Wild-Type Inhibitors of the M2 Ion Channel of Influenza A Virus to Derivatives with Potent Activity against the V27A Mutant
Journal of Medicinal Chemistry 2013.0
Discovery of Highly Potent Inhibitors Targeting the Predominant Drug-Resistant S31N Mutant of the Influenza A Virus M2 Proton Channel
Journal of Medicinal Chemistry 2016.0
Discovery of Novel Dual Inhibitors of the Wild-Type and the Most Prevalent Drug-Resistant Mutant, S31N, of the M2 Proton Channel from Influenza A Virus
Journal of Medicinal Chemistry 2013.0
Discovery of highly potent agents against influenza A virus
European Journal of Medicinal Chemistry 2011.0
Exploring the Size Limit of Templates for Inhibitors of the M2 Ion Channel of Influenza A Virus
Journal of Medicinal Chemistry 2011.0
Imidazole-based pinanamine derivatives: Discovery of dual inhibitors of the wild-type and drug-resistant mutant of the influenza A virus
European Journal of Medicinal Chemistry 2016.0
Identification of camphor derivatives as novel M2 ion channel inhibitors of influenza A virus
MedChemComm 2015.0
Slow but Steady Wins the Race: Dissimilarities among New Dual Inhibitors of the Wild-Type and the V27A Mutant M2 Channels of Influenza A Virus
Journal of Medicinal Chemistry 2017.0