HM30181 Derivatives as Novel Potent and Selective Inhibitors of the Breast Cancer Resistance Protein (BCRP/ABCG2)

Journal of Medicinal Chemistry
2015.0

Abstract

The breast cancer resistance protein (BCRP, ABCG2) belongs to the superfamily of ATP binding-cassette (ABC) proteins. In addition to other physiological functions, it transports potentially cell-damaging compounds out of the cell using the energy from ATP hydrolysis. Certain tumors overexpressing BCRP were found to become resistant against various anticancer drugs. In previous work, we found that tariquidar analogues lacking the tetrahydroisoquinoline moiety selectively inhibit BCRP. In the present study, we synthesized 21 derivatives of the third-generation P-gp inhibitor HM30181, which is structurally related to tariquidar. The compounds were tested for their inhibitory activities against BCRP and screened against P-glycoprotein (P-gp, ABCB1) and multidrug resistance protein 1 (MRP1, ABCC1) to confirm the selectivity toward BCRP. The most potent compounds are selective toward BCRP and 2-fold more potent than the reference Ko143. Qualitative structure-activity relationship (SAR) analysis revealed that the presence of a methoxy group in the ortho or para position of at least one phenyl ring is beneficial for inhibitory activity. Furthermore, the cytotoxicity and multidrug resistance (MDR)-reversal ability of selected compounds were investigated. It was shown that they have a low cytotoxicity and the ability to reverse the BCRP-mediated SN-38 resistance.

Knowledge Graph

Similar Paper

HM30181 Derivatives as Novel Potent and Selective Inhibitors of the Breast Cancer Resistance Protein (BCRP/ABCG2)
Journal of Medicinal Chemistry 2015.0
Structure–activity relationships of new inhibitors of breast cancer resistance protein (ABCG2)
Bioorganic & Medicinal Chemistry 2008.0
Synthesis and Investigation of Tetrahydro-β-carboline Derivatives as Inhibitors of the Breast Cancer Resistance Protein (ABCG2)
Journal of Medicinal Chemistry 2016.0
Potent and Selective Inhibitors of Breast Cancer Resistance Protein (ABCG2) Derived from the p-Glycoprotein (ABCB1) Modulator Tariquidar
Journal of Medicinal Chemistry 2009.0
Synthesis and biological evaluation of flavones and benzoflavones as inhibitors of BCRP/ABCG2
European Journal of Medicinal Chemistry 2013.0
Design, synthesis and biological evaluation of benzamide and phenyltetrazole derivatives with amide and urea linkers as BCRP inhibitors
Bioorganic & Medicinal Chemistry Letters 2017.0
4-Anilino-2-pyridylquinazolines and -pyrimidines as Highly Potent and Nontoxic Inhibitors of Breast Cancer Resistance Protein (ABCG2)
Journal of Medicinal Chemistry 2017.0
Piperazinobenzopyranones and Phenalkylaminobenzopyranones:  Potent Inhibitors of Breast Cancer Resistance Protein (ABCG2)
Journal of Medicinal Chemistry 2005.0
Acridone derivatives: Design, synthesis, and inhibition of breast cancer resistance protein ABCG2
Bioorganic & Medicinal Chemistry 2007.0
Synthesis of methylated quercetin derivatives and their reversal activities on P-gp- and BCRP-mediated multidrug resistance tumour cells
European Journal of Medicinal Chemistry 2012.0