Functional Profiling of 2-Aminopyrimidine Histamine H4Receptor Modulators

Journal of Medicinal Chemistry
2015.0

Abstract

Histamine is an important endogenous signaling molecule that is involved in a number of physiological processes including allergic reactions, gastric acid secretion, neurotransmitter release, and inflammation. The biological effects of histamine are mediated by four histamine receptors with distinct functions and distribution profiles (H1-H4). The most recently discovered histamine receptor (H4) has emerged as a promising drug target for treating inflammatory diseases. A detailed understanding of the role of the H4 receptor in human disease remains elusive, in part because low sequence similarity between the human and rodent H4 receptors complicates the translation of preclinical pharmacology to humans. This review provides an overview of H4 drug discovery programs that have studied cross-species structure-activity relationships, with a focus on the functional profiling of the 2-aminopyrimidine chemotype that has advanced to the clinic for allergy, atopic dermatitis, asthma, and rheumatoid arthritis.

Knowledge Graph

Similar Paper

Functional Profiling of 2-Aminopyrimidine Histamine H<sub>4</sub>Receptor Modulators
Journal of Medicinal Chemistry 2015.0
2,4-Diaminopyrimidines as histamine H4 receptor ligands—Scaffold optimization and pharmacological characterization
Bioorganic &amp; Medicinal Chemistry 2009.0
Histamine H4 receptor agonists
Bioorganic &amp; Medicinal Chemistry Letters 2010.0
Rotationally Constrained 2,4-Diamino-5,6-disubstituted Pyrimidines: A New Class of Histamine H<sub>4</sub>Receptor Antagonists with Improved Druglikeness and in Vivo Efficacy in Pain and Inflammation Models
Journal of Medicinal Chemistry 2008.0
2,4-Diaminopyrimidines as dual ligands at the histamine H 1 and H 4 receptor—H 1 /H 4 -receptor selectivity
Bioorganic &amp; Medicinal Chemistry Letters 2016.0
Agonist/antagonist modulation in a series of 2-aryl benzimidazole H4 receptor ligands
Bioorganic &amp; Medicinal Chemistry Letters 2010.0
Ligand based design of novel histamine H4 receptor antagonists; fragment optimization and analysis of binding kinetics
Bioorganic &amp; Medicinal Chemistry Letters 2012.0
Discovery of Quinazolines as Histamine H<sub>4</sub>Receptor Inverse Agonists Using a Scaffold Hopping Approach
Journal of Medicinal Chemistry 2008.0
Synthesis and structure–activity relationships of indole and benzimidazole piperazines as histamine H4 receptor antagonists
Bioorganic &amp; Medicinal Chemistry Letters 2004.0
Fragment Based Design of New H<sub>4</sub>Receptor−Ligands with Anti-inflammatory Properties in Vivo
Journal of Medicinal Chemistry 2008.0