Histamine H4 receptor agonists

Bioorganic & Medicinal Chemistry Letters
2010.0

Abstract

Since its discovery 10 years ago the histamine H(4) receptor (H(4)R) has attracted attention as a potential drug target, for instance, for the treatment of inflammatory and allergic diseases. Potent and selective ligands including agonists are required as pharmacological tools to study the role of the H(4)R in vitro and in vivo. Many H(4)R agonists, which were identified among already known histamine receptor ligands, show only low or insufficient H(4)R selectivity. In addition, the investigation of numerous H(4)R agonists in animal models is hampered by species-dependent discrepancies regarding potencies and histamine receptor selectivities of the available compounds, especially when comparing human and rodent receptors. This article gives an overview about structures, potencies, and selectivities of various compounds showing H(4)R agonistic activity and summarizes the structure-activity relationships of selected compound classes.

Knowledge Graph

Similar Paper

Histamine H4 receptor agonists
Bioorganic & Medicinal Chemistry Letters 2010.0
Functional Profiling of 2-Aminopyrimidine Histamine H<sub>4</sub>Receptor Modulators
Journal of Medicinal Chemistry 2015.0
2,4-Diaminopyrimidines as histamine H4 receptor ligands—Scaffold optimization and pharmacological characterization
Bioorganic &amp; Medicinal Chemistry 2009.0
Ligand based design of novel histamine H4 receptor antagonists; fragment optimization and analysis of binding kinetics
Bioorganic &amp; Medicinal Chemistry Letters 2012.0
Rotationally Constrained 2,4-Diamino-5,6-disubstituted Pyrimidines: A New Class of Histamine H<sub>4</sub>Receptor Antagonists with Improved Druglikeness and in Vivo Efficacy in Pain and Inflammation Models
Journal of Medicinal Chemistry 2008.0
Synthesis and Structure−Activity Relationships of Cyanoguanidine-Type and Structurally Related Histamine H<sub>4</sub>Receptor Agonists
Journal of Medicinal Chemistry 2009.0
Discovery of Quinazolines as Histamine H<sub>4</sub>Receptor Inverse Agonists Using a Scaffold Hopping Approach
Journal of Medicinal Chemistry 2008.0
Fragment Based Design of New H<sub>4</sub>Receptor−Ligands with Anti-inflammatory Properties in Vivo
Journal of Medicinal Chemistry 2008.0
N<sup>G</sup>-Acylated Imidazolylpropylguanidines as Potent Histamine H<sub>4</sub>Receptor Agonists: Selectivity by Variation of theN<sup>G</sup>-Substituent
Journal of Medicinal Chemistry 2009.0
Conformational Restriction and Enantioseparation Increase Potency and Selectivity of Cyanoguanidine-Type Histamine H<sub>4</sub>Receptor Agonists
Journal of Medicinal Chemistry 2016.0