Synthesis and evaluation of C9 alkoxy analogues of (-)-stepholidine as dopamine receptor ligands

European Journal of Medicinal Chemistry
2017.0

Abstract

Tetrahydroprotoberberine alkaloids have shown interesting polypharmacological actions at dopamine receptors and are a unique template from which to mine novel molecules with dual selective actions at D1 and D3 receptors. Such compounds will be valuable to evaluate as anti-cocaine therapeutics. Towards that eventual goal, we engaged an SAR study in which a series of C9 alkoxy analogues of the D1/D2/D3 ligand (-)-stepholidine that possessed or lacked a C12 bromo functionality, were synthesized and evaluated for affinity at dopamine D1, D2 and D3 receptors. We found that the analogues are generally selective for the D1 receptor. Small n-alkoxy substituents (up to 4 carbons in length) were generally well tolerated for high D1 affinity but such groups reduced D3 affinity. In the case of C12 brominated analogues, C9 alkoxylation also had little effect on D1 affinity for the smaller alkoxy groups, but reduced D2 and D3 affinities significantly. C12 bromination tends to increase D1 receptor selectivity. A number of compounds were identified that retain affinity for D1 and D3 receptors but lack D2 receptor affinity. Among them, compound 22a was found to be a selective D1/D3 dual antagonist (Ki = 5.3 and 106 nM at D1 and D3 receptors). Docking studies performed on the analogues at the D3 receptor revealed a number of interactions that are important for affinity including a critical N - Asp110 salt bridge motif, H-bonds to Ser192 and Cys181 and hydrophobic interactions between the aryl rings and Phe106 and Phe345. The analogues adopt an orientation in which ring A is located in the orthosteric binding site while the C9 alkoxy substituents attached to ring D project into the secondary binding pocket of the D3 receptor.

Knowledge Graph

Similar Paper

Synthesis and evaluation of C9 alkoxy analogues of (-)-stepholidine as dopamine receptor ligands
European Journal of Medicinal Chemistry 2017.0
Tetrahydroprotoberberine alkaloids with dopamine and σ receptor affinity
Bioorganic & Medicinal Chemistry 2016.0
Chemical synthesis, microbial transformation and biological evaluation of tetrahydroprotoberberines as dopamine D1/D2 receptor ligands
Bioorganic & Medicinal Chemistry 2019.0
Design, synthesis, and pharmacological evaluation of novel tetrahydroprotoberberine derivatives: Selective inhibitors of dopamine D1 receptor
Bioorganic & Medicinal Chemistry 2012.0
Synthesis of 3-(3-hydroxyphenyl)pyrrolidine dopamine D3 receptor ligands with extended functionality for probing the secondary binding pocket
Bioorganic & Medicinal Chemistry Letters 2018.0
Asymmetric total synthesis and identification of tetrahydroprotoberberine derivatives as new antipsychotic agents possessing a dopamine D1, D2 and serotonin 5-HT1A multi-action profile
Bioorganic & Medicinal Chemistry 2013.0
Design and Synthesis of Bitopic 2-Phenylcyclopropylmethylamine (PCPMA) Derivatives as Selective Dopamine D3 Receptor Ligands
Journal of Medicinal Chemistry 2020.0
Evaluation of cis- and trans-9- and 11-Hydroxy-5,6,6a,7,8,12b-hexahydrobenzo[a]phenanthridines as Structurally Rigid, Selective D1 Dopamine Receptor Ligands
Journal of Medicinal Chemistry 1995.0
Synthesis and pharmacological characterization of 1-phenyl-, 4-phenyl-, and 1-benzyl-1,2,3,4-tetrahydroisoquinolines as dopamine receptor ligands
Journal of Medicinal Chemistry 1988.0
Further delineation of hydrophobic binding sites in dopamine D2/D3 receptors for N-4 substituents on the piperazine ring of the hybrid template 5/7-{[2-(4-aryl-piperazin-1-yl)-ethyl]-propyl-amino}-5,6,7,8-tetrahydro-naphthalen-2-ol
Bioorganic & Medicinal Chemistry 2010.0