Design and Synthesis of Novel Deuterated Ligands Functionally Selective for the γ-Aminobutyric Acid Type A Receptor (GABAAR) α6 Subtype with Improved Metabolic Stability and Enhanced Bioavailability

Journal of Medicinal Chemistry
2018.0

Abstract

Recent reports indicate that α6β2/3γ2 GABAAR selective ligands may be important for the treatment of trigeminal activation-related pain and neuropsychiatric disorders with sensori-motor gating deficits. Based on 3 functionally α6β2/3γ2 GABAAR selective pyrazoloquinolinones, 42 novel analogs were synthesized, and their in vitro metabolic stability and cytotoxicity as well as their in vivo pharmacokinetics, basic behavioral pharmacology, and effects on locomotion were investigated. Incorporation of deuterium into the methoxy substituents of the ligands increased their duration of action via improved metabolic stability and bioavailability, while their selectivity for the GABAAR α6 subtype was retained. 8b was identified as the lead compound with a substantially improved pharmacokinetic profile. The ligands allosterically modulated diazepam insensitive α6β2/3γ2 GABAARs and were functionally silent at diazepam sensitive α1β2/3γ2 GABAARs, thus no sedation was detected. In addition, these analogs were not cytotoxic, which render them interesting candidates for treatment of CNS disorders mediated by GABAAR α6β2/3γ2 subtypes.

Knowledge Graph

Similar Paper

Design and Synthesis of Novel Deuterated Ligands Functionally Selective for the γ-Aminobutyric Acid Type A Receptor (GABA<sub>A</sub>R) α6 Subtype with Improved Metabolic Stability and Enhanced Bioavailability
Journal of Medicinal Chemistry 2018.0
Search for α3β2/3γ2 subtype selective ligands that are stable on human liver microsomes
Bioorganic &amp; Medicinal Chemistry 2013.0
Identification of a New Pyrazolo[1,5-a]quinazoline Ligand Highly Affine to γ-Aminobutyric Type A (GABA<sub>A</sub>) Receptor Subtype with Anxiolytic-Like and Antihyperalgesic Activity
Journal of Medicinal Chemistry 2017.0
3-Phenyl-6-(2-pyridyl)methyloxy-1,2,4-triazolo[3,4-a]phthalazines and Analogues:  High-Affinity γ-Aminobutyric Acid-A Benzodiazepine Receptor Ligands with α2, α3, and α5-Subtype Binding Selectivity over α1
Journal of Medicinal Chemistry 2004.0
7-(1,1-Dimethylethyl)-6-(2-ethyl-2H-1,2,4- triazol-3-ylmethoxy)-3-(2-fluorophenyl)- 1,2,4-triazolo[4,3-b]pyridazine:  A Functionally Selective γ-Aminobutyric Acid<sub>A</sub>(GABA<sub>A</sub>) α2/α3-Subtype Selective Agonist That Exhibits Potent Anxiolytic Activity but Is Not Sedating in Animal Models
Journal of Medicinal Chemistry 2005.0
4-Quinolone Derivatives:  High-Affinity Ligands at the Benzodiazepine Site of Brain GABA<sub>A</sub>Receptors. Synthesis, Pharmacology, and Pharmacophore Modeling
Journal of Medicinal Chemistry 2006.0
A Novel Selective GABA<sub>A</sub>α1 Receptor Agonist Displaying Sedative and Anxiolytic-like Properties in Rodents
Journal of Medicinal Chemistry 2005.0
Rationalizing the binding and α subtype selectivity of synthesized imidazodiazepines and benzodiazepines at GABAA receptors by using molecular docking studies
Bioorganic &amp; Medicinal Chemistry Letters 2022.0
Selective Influence on Contextual Memory: Physiochemical Properties Associated with Selectivity of Benzodiazepine Ligands at GABA<sub>A</sub>Receptors Containing the α5 Subunit
Journal of Medicinal Chemistry 2008.0
Pharmacophore/Receptor Models for GABA<sub>A</sub>/BzR Subtypes (α1β3γ2, α5β3γ2, and α6β3γ2) via a Comprehensive Ligand-Mapping Approach
Journal of Medicinal Chemistry 2000.0