Discovery of Novel Indazole Derivatives as Orally Available β3-Adrenergic Receptor Agonists Lacking Off-Target-Based Cardiovascular Side Effects

Journal of Medicinal Chemistry
2017.0

Abstract

We previously discovered that indazole derivative 8 was a highly selective β3-adrenergic receptor (β3-AR) agonist, but it appeared to be metabolically unstable. To improve metabolic stability, further optimization of this scaffold was carried out. We focused on the sulfonamide moiety of this scaffold, which resulted in the discovery of compound 15 as a highly potent β3-AR agonist (EC50 = 18 nM) being inactive to β1-, β2-, and α1A-AR (β1/β3, β2/β3, and α1A/β3 > 556-fold). Compound 15 showed dose-dependent β3-AR-mediated responses in marmoset urinary bladder smooth muscle, had a desirable metabolic stability and pharmacokinetic profile (Cmax and AUC), and did not obviously affect heart rate or mean blood pressure when administered intravenously (3 mg/kg) to anesthetized rats. Thus, compound 15 is a highly potent, selective, and orally available β3-AR agonist, which may serve as a candidate drug for the treatment of overactive bladder without off-target-based cardiovascular side effects.

Knowledge Graph

Similar Paper

Discovery of Novel Indazole Derivatives as Orally Available β<sub>3</sub>-Adrenergic Receptor Agonists Lacking Off-Target-Based Cardiovascular Side Effects
Journal of Medicinal Chemistry 2017.0
Discovery of Novel Indazole Derivatives as Highly Potent and Selective Human β<sub>3</sub>-Adrenergic Receptor Agonists with the Possibility of Having No Cardiovascular Side Effects
Journal of Medicinal Chemistry 2015.0
Discovery of a Novel Series of Biphenyl Benzoic Acid Derivatives as Potent and Selective Human β<sub>3</sub>-Adrenergic Receptor Agonists with Good Oral Bioavailability. Part I
Journal of Medicinal Chemistry 2008.0
Discovery of a novel, potent and selective human β3-adrenergic receptor agonist
Bioorganic &amp; Medicinal Chemistry Letters 2005.0
Discovery of NovelN-Phenylglycine Derivatives as Potent and Selective β<sub>3</sub>-Adrenoceptor Agonists for the Treatment of Frequent Urination and Urinary Incontinence
Journal of Medicinal Chemistry 2001.0
Synthesis and evaluation of novel phenoxypropanolamine derivatives containing acetanilides as potent and selective β3-adrenergic receptor agonists
Bioorganic &amp; Medicinal Chemistry 2009.0
Discovery of novel thiourea derivatives as potent and selective β3-adrenergic receptor agonists
Bioorganic &amp; Medicinal Chemistry 2009.0
Discovery of novel acetanilide derivatives as potent and selective β3-adrenergic receptor agonists
European Journal of Medicinal Chemistry 2009.0
Discovery of Highly Potent and Selective Biphenylacylsulfonamide-Based β<sub>3</sub>-Adrenergic Receptor Agonists and Evaluation of Physical Properties as Potential Overactive Bladder Therapies: Part 5
Journal of Medicinal Chemistry 2009.0
Discovery of novel series of benzoic acid derivatives containing biphenyl ether moiety as potent and selective human β3-adrenergic receptor agonists: Part IV
Bioorganic &amp; Medicinal Chemistry Letters 2008.0