Pharmacology and in vivo efficacy of pyridine-pyrimidine amides that inhibit microtubule polymerization

Bioorganic & Medicinal Chemistry Letters
2018.0

Abstract

Microtubule-targeting agents are important tools in cancer treatment. Generating novel microtubule targeting agents with novel pharmacology could dramatically expand the utility of this class of drugs. Here we characterize the pharmacology of recently described small molecule microtubule polymerization inhibitors. Pharmacokinetic experiments show oral bioavailability through gastric absorption. In vitro assays designed to predict absorption, distribution, metabolism, and excretion (ADME) and safety reveal a scaffold that is metabolically stable, evades P-glycoprotein, does not inhibit CYP enzymes, occurs as a significant free fraction in serum, and has exceptionally high cellular permeability. Together with in vivo efficacy models, pharmacology supports further development as a treatment for solid tumors.

Knowledge Graph

Similar Paper

Pharmacology and in vivo efficacy of pyridine-pyrimidine amides that inhibit microtubule polymerization
Bioorganic & Medicinal Chemistry Letters 2018.0
Sterically induced conformational restriction: Discovery and preclinical evaluation of novel pyrrolo[3,2-d]pyrimidines as microtubule targeting agents
Bioorganic & Medicinal Chemistry 2018.0
Novel pyrazolo[4,3-d]pyrimidine microtubule targeting agents (MTAs): Synthesis, structure–activity relationship, in vitro and in vivo evaluation as antitumor agents
Bioorganic & Medicinal Chemistry Letters 2021.0
Design, Synthesis, and Preclinical Evaluation of 4-Substituted-5-methyl-furo[2,3-d]pyrimidines as Microtubule Targeting Agents That Are Effective against Multidrug Resistant Cancer Cells
Journal of Medicinal Chemistry 2016.0
Simple monocyclic pyrimidine analogs as microtubule targeting agents binding to the colchicine site
Bioorganic & Medicinal Chemistry 2023.0
Synthesis and Discovery of Water-Soluble Microtubule Targeting Agents that Bind to the Colchicine Site on Tubulin and Circumvent Pgp Mediated Resistance
Journal of Medicinal Chemistry 2010.0
Discovery and preclinical evaluation of 7-benzyl-N-(substituted)-pyrrolo[3,2-d]pyrimidin-4-amines as single agents with microtubule targeting effects along with triple-acting angiokinase inhibition as antitumor agents
Bioorganic & Medicinal Chemistry 2017.0
An Orally Bioavailable, Indole-3-glyoxylamide Based Series of Tubulin Polymerization Inhibitors Showing Tumor Growth Inhibition in a Mouse Xenograft Model of Head and Neck Cancer
Journal of Medicinal Chemistry 2015.0
Identification of CKD-516: A Potent Tubulin Polymerization Inhibitor with Marked Antitumor Activity against Murine and Human Solid Tumors
Journal of Medicinal Chemistry 2010.0
Design, Synthesis, and Biological Evaluation of (E)-N-Aryl-2-arylethenesulfonamide Analogues as Potent and Orally Bioavailable Microtubule-Targeted Anticancer Agents
Journal of Medicinal Chemistry 2013.0