Novel nicotinoyl pyrazoline derivates bearing N-methyl indole moiety as antitumor agents: Design, synthesis and evaluation

European Journal of Medicinal Chemistry
2018.0

Abstract

In the present work, twenty-five nicotinoyl pyrazoline derivates bearing N-methyl indole moiety have been designed and synthesized. The biological evaluation of these compounds as tubulin assembly inhibitors revealed that most of them were potential antitumor agents. Among them, compound 28 exhibited most potency against cancer cell line panels (GI50 = 29-90 nM for HeLa, HepG2 and MCF-7 cells) without toxicity to non-tumor cells (CC50 > 300 μM for 293 T cell), bound to the colchicine site of tubulin and displayed excellent inhibitory activity in tubulin assembly assay (IC50 = 1.6 μM, better than CA-4). Molecular dynamics simulation was carried out to validate the docking pose of compound 28 with tubulin crystalline. Further investigation on HepG2 and HeLa cells demonstrated that compound 28 could cause mitosis arrest to G2/M phase, and subsequently induced cell apoptosis. The efficiency in vivo of compound 28 was also evaluated on HeLa-Xenograft nude mice, and the relative tumor inhibition ration was up to 61.52% without noticeable weight loss and tissue damage (examined by H&E staining), which was comparable to CA-4 (inhibited 59.92%). In brief, compound 28 is a promising candidate for tumor therapy as tubulin assembly inhibitor.

Knowledge Graph

Similar Paper

Novel nicotinoyl pyrazoline derivates bearing N-methyl indole moiety as antitumor agents: Design, synthesis and evaluation
European Journal of Medicinal Chemistry 2018.0
Design, synthesis and biological evaluation of a series of pyrano chalcone derivatives containing indole moiety as novel anti-tubulin agents
Bioorganic & Medicinal Chemistry 2014.0
Synthesis and biological evaluation of novel indole derivatives containing sulfonamide scaffold as potential tubulin inhibitor
MedChemComm 2016.0
Synthesis and bioactive evaluation of N-((1-methyl-1H-indol-3-yl)methyl)-N-(3,4,5-trimethoxyphenyl)acetamide derivatives as agents for inhibiting tubulin polymerization
RSC Medicinal Chemistry 2022.0
Synthesis, biological evaluation, and molecular docking studies of novel 1-benzene acyl-2-(1-methylindol-3-yl)-benzimidazole derivatives as potential tubulin polymerization inhibitors
European Journal of Medicinal Chemistry 2015.0
Design, synthesis, and bioevaluation of imidazo [1,2–a] pyrazine derivatives as tubulin polymerization inhibitors with potent anticancer activities
Bioorganic & Medicinal Chemistry 2022.0
Synthesis, biological evaluation and molecular docking of benzimidazole grafted benzsulfamide-containing pyrazole ring derivatives as novel tubulin polymerization inhibitors
Bioorganic & Medicinal Chemistry 2019.0
Design, synthesis and biological evaluation of novel tubulin inhibitors targeting colchicine sites
Bioorganic & Medicinal Chemistry Letters 2023.0
Design, synthesis and biological evaluation of novel indole-based oxalamide and aminoacetamide derivatives as tubulin polymerization inhibitors
Bioorganic & Medicinal Chemistry Letters 2020.0
New 6- and 7-heterocyclyl-1H-indole derivatives as potent tubulin assembly and cancer cell growth inhibitors
European Journal of Medicinal Chemistry 2018.0