Antimalarial Lead-Optimization Studies on a 2,6-Imidazopyridine Series within a Constrained Chemical Space To Circumvent Atypical Dose–Response Curves against Multidrug Resistant Parasite Strains

Journal of Medicinal Chemistry
2018.0

Abstract

A lead-optimization program around a 2,6-imidazopyridine scaffold was initiated based on the two early lead compounds, 1 and 2, that were shown to be efficacious in an in vivo humanized Plasmodium falciparum NODscidIL2Rγnull mouse malaria infection model. The observation of atypical dose-response curves when some compounds were tested against multidrug resistant malaria parasite strains guided the optimization process to define a chemical space that led to typical sigmoidal dose-response and complete kill of multidrug resistant parasites. After a structure and property analysis identified such a chemical space, compounds were prepared that displayed suitable activity, ADME, and safety profiles with respect to cytotoxicity and hERG inhibition.

Knowledge Graph

Similar Paper

Antimalarial Lead-Optimization Studies on a 2,6-Imidazopyridine Series within a Constrained Chemical Space To Circumvent Atypical Dose–Response Curves against Multidrug Resistant Parasite Strains
Journal of Medicinal Chemistry 2018.0
Identification of Fast-Acting 2,6-Disubstituted Imidazopyridines That Are Efficacious in the in Vivo Humanized Plasmodium falciparum NODscidIL2Rγ<sup>null</sup> Mouse Model of Malaria
Journal of Medicinal Chemistry 2018.0
Imidazolopiperazines: Hit to Lead Optimization of New Antimalarial Agents
Journal of Medicinal Chemistry 2011.0
Identification of 2,4-Disubstituted Imidazopyridines as Hemozoin Formation Inhibitors with Fast-Killing Kinetics and In Vivo Efficacy in the Plasmodium falciparum NSG Mouse Model
Journal of Medicinal Chemistry 2020.0
N-Aryl-2-aminobenzimidazoles: Novel, Efficacious, Antimalarial Lead Compounds
Journal of Medicinal Chemistry 2014.0
A Novel Pyrazolopyridine with in Vivo Activity in Plasmodium berghei- and Plasmodium falciparum-Infected Mouse Models from Structure–Activity Relationship Studies around the Core of Recently Identified Antimalarial Imidazopyridazines
Journal of Medicinal Chemistry 2015.0
Structure-Guided Lead Optimization of Triazolopyrimidine-Ring Substituents Identifies PotentPlasmodium falciparumDihydroorotate Dehydrogenase Inhibitors with Clinical Candidate Potential
Journal of Medicinal Chemistry 2011.0
Imidazolopiperazines: Lead Optimization of the Second-Generation Antimalarial Agents
Journal of Medicinal Chemistry 2012.0
Aminoazabenzimidazoles, a Novel Class of Orally Active Antimalarial Agents
Journal of Medicinal Chemistry 2014.0
Lead Optimization of Aryl and Aralkyl Amine-Based Triazolopyrimidine Inhibitors ofPlasmodium falciparumDihydroorotate Dehydrogenase with Antimalarial Activity in Mice
Journal of Medicinal Chemistry 2011.0