Comparative study between the anti-P. falciparum activity of triazolopyrimidine, pyrazolopyrimidine and quinoline derivatives and the identification of new PfDHODH inhibitors

European Journal of Medicinal Chemistry
2021.0

Abstract

In this work, we designed and synthesized 35 new triazolopyrimidine, pyrazolopyrimidine and quinoline derivatives as P. falciparum inhibitors (3D7 strain). Thirty compounds exhibited anti-P. falciparum activity, with IC values ranging from 0.030 to 9.1 μM. The [1,2,4]triazolo[1,5-a]pyrimidine derivatives were more potent than the pyrazolo[1,5-a]pyrimidine and quinoline analogues. Compounds 20, 21, 23 and 24 were the most potent inhibitors, with IC values in the range of 0.030-0.086 μM and were equipotent to chloroquine. In addition, the compounds were selective, showing no cytotoxic activity against the human hepatoma cell line HepG2. All [1,2,4]triazolo[1,5-a]pyrimidine derivatives inhibited PfDHODH activity in the low micromolar to low nanomolar range (IC values of 0.08-1.3 μM) and did not show significant inhibition against the HsDHODH homologue (0-30% at 50 μM). Molecular docking studies indicated the binding mode of [1,2,4]triazolo[1,5-a]pyrimidine derivatives to PfDHODH, and the highest interaction affinities for the PfDHODH enzyme were in agreement with the in vitro experimental evaluation. Thus, the most active compounds against P. falciparum parasites 20 (R = CF, R = F; IC = 0.086 μM), 21 (R = CF; R = CH; IC = 0.032 μM), 23, (R = CF, R = CF; IC = 0.030 μM) and 24 (R = CF, 2-naphthyl; IC = 0.050 μM) and the most active inhibitor against PfDHODH 19 (R = CF, R = Cl; IC = 0.08 μM - PfDHODH) stood out as new lead compounds for antimalarial drug discovery. Their potent in vitro activity against P. falciparum and the selective inhibition of the PfDHODH enzyme strongly suggest that this is the mechanism of action underlying this series of new [1,2,4]triazolo[1,5-a]pyrimidine derivatives.

Knowledge Graph

Similar Paper

Comparative study between the anti-P. falciparum activity of triazolopyrimidine, pyrazolopyrimidine and quinoline derivatives and the identification of new PfDHODH inhibitors
European Journal of Medicinal Chemistry 2021.0
Evaluation of 7-arylaminopyrazolo[1,5-a]pyrimidines as anti-Plasmodium falciparum, antimalarial, and Pf-dihydroorotate dehydrogenase inhibitors
European Journal of Medicinal Chemistry 2017.0
Lead Optimization of Aryl and Aralkyl Amine-Based Triazolopyrimidine Inhibitors ofPlasmodium falciparumDihydroorotate Dehydrogenase with Antimalarial Activity in Mice
Journal of Medicinal Chemistry 2011.0
Synthesis, in silico experiments and biological evaluation of 1,3,4-trisubstituted pyrazole derivatives as antimalarial agents
European Journal of Medicinal Chemistry 2019.0
Structure-Guided Lead Optimization of Triazolopyrimidine-Ring Substituents Identifies PotentPlasmodium falciparumDihydroorotate Dehydrogenase Inhibitors with Clinical Candidate Potential
Journal of Medicinal Chemistry 2011.0
In vitro antimalarial activity, β-haematin inhibition and structure–activity relationships in a series of quinoline triazoles
European Journal of Medicinal Chemistry 2013.0
Synthesis and evaluation of naphthyl bearing 1,2,3-triazole analogs as antiplasmodial agents, cytotoxicity and docking studies
Bioorganic & Medicinal Chemistry 2017.0
Antimalarial activity of 4-(5-trifluoromethyl-1H-pyrazol-1-yl)-chloroquine analogues
Bioorganic & Medicinal Chemistry Letters 2006.0
Molecular modeling studies, synthesis and biological evaluation of derivatives of N-phenylbenzamide as Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) inhibitors
Medicinal Chemistry Research 2011.0
Tetrahydro-2-naphthyl and 2-Indanyl Triazolopyrimidines Targeting Plasmodium falciparum Dihydroorotate Dehydrogenase Display Potent and Selective Antimalarial Activity
Journal of Medicinal Chemistry 2016.0