Design, synthesis and biological evaluation of novel HDAC inhibitors with improved pharmacokinetic profile in breast cancer

European Journal of Medicinal Chemistry
2020.0

Abstract

The dysfunction of histone deacetylase (HDACs) is closely related to tumorigenesis and development, which has been emerged as an attractive drug design target for cancer therapy. In the present study, we designed and synthesized a series of novel HDAC inhibitors using a substituted quinazoline as the capping group and attaching 3, 5-dimethylbenyl as a potential metabolic site protector. 23g and 23h were demonstrated potent HDAC inhibitory activities and anti-proliferative effects against MDA-MB-231 cells. In addition, 23g and 23h both could significantly increase the acetylation level of intracellular proteins, especially in α-Tubulin and HSP90. 23g and 23h displayed a slight different anti-tumor mechanism, 23g mainly induced apoptosis while 23h induced obviously ER-Stress. Furthermore, 23g and 23h both induced autophagy and migration inhibition. In pharmacokinetics assay, 23g showed a significant improvement of pharmacokinetic profile for oral administration. Additionally, 23g presented more potent anti-proliferation and anti-migration activity than SAHA in zebrafish MDA-MB-231 cell line-derived xenograft model. Together, these results demonstrate that 23g is a novel oral HDAC inhibitor with a potential capacity of treating breast cancer.

Knowledge Graph

Similar Paper

Design, synthesis and biological evaluation of novel HDAC inhibitors with improved pharmacokinetic profile in breast cancer
European Journal of Medicinal Chemistry 2020.0
Discovery of Selective Histone Deacetylase 6 Inhibitors Using the Quinazoline as the Cap for the Treatment of Cancer
Journal of Medicinal Chemistry 2016.0
Design, synthesis, and biological evaluation of novel HDAC inhibitors with a 3-(benzazol-2-yl)quinoxaline framework
Bioorganic & Medicinal Chemistry Letters 2023.0
Design, synthesis and preliminary bioactivity evaluations of substituted quinoline hydroxamic acid derivatives as novel histone deacetylase (HDAC) inhibitors
Bioorganic & Medicinal Chemistry 2015.0
Discovery of phthalazino[1,2-b]-quinazolinone derivatives as multi-target HDAC inhibitors for the treatment of hepatocellular carcinoma via activating the p53 signal pathway
European Journal of Medicinal Chemistry 2022.0
Design, synthesis and bioactivity evaluations of 8-substituted-quinoline-2-carboxamide derivatives as novel histone deacetylase (HDAC) inhibitors
Bioorganic & Medicinal Chemistry 2023.0
Design, synthesis and biological evaluation of novel histone deacetylase inhibitors incorporating 4-aminoquinazolinyl systems as capping groups
Bioorganic & Medicinal Chemistry Letters 2017.0
Design, Synthesis, and Biological Evaluation of 4-Methyl Quinazoline Derivatives as Anticancer Agents Simultaneously Targeting Phosphoinositide 3-Kinases and Histone Deacetylases
Journal of Medicinal Chemistry 2019.0
Design, synthesis, and evaluation of biphenyl-4-yl-acrylohydroxamic acid derivatives as histone deacetylase (HDAC) inhibitors
European Journal of Medicinal Chemistry 2009.0
Design, synthesis and preliminary bioactivity studies of 1,2-dihydrobenzo[d]isothiazol-3-one-1,1-dioxide hydroxamic acid derivatives as novel histone deacetylase inhibitors
Bioorganic & Medicinal Chemistry 2014.0