Ugi Reaction Synthesis of Oxindole–Lactam Hybrids as Selective Butyrylcholinesterase Inhibitors

ACS Medicinal Chemistry Letters
2021.0

Abstract

Molecular hybridization is a valuable approach in drug discovery. Combining it with multicomponent reactions is highly desirable, since structurally diverse libraries can be attained efficiently in an eco-friendly manner. In this work, isatin is used as the key building block for the Ugi 4-center 3-component reaction synthesis of oxindole-lactam hybrids, under catalyst-free conditions. The resulting oxindole-β-lactam and oxindole-γ-lactam hybrids were evaluated for their potential to inhibit relevant central nervous system targets, namely cholinesterases and monoamine oxidases. Druglikeness evaluation was also performed, and compounds <b>4eca</b> and <b>5dab</b> exhibited great potential as selective butyrylcholinesterase inhibitors, at the low micromolar range, with an interesting predictive pharmacokinetic profile. Our findings herein reported suggest oxindole-lactam hybrids as new potential agents for the treatment of Alzheimer's disease.

Knowledge Graph

Similar Paper

Ugi Reaction Synthesis of Oxindole–Lactam Hybrids as Selective Butyrylcholinesterase Inhibitors
ACS Medicinal Chemistry Letters 2021.0
Application of the Ugi Multicomponent Reaction in the Synthesis of Reactivators of Nerve Agent Inhibited Acetylcholinesterase
Journal of Medicinal Chemistry 2017.0
Hybrids of oxoisoaporphine-tacrine congeners: Novel acetylcholinesterase and acetylcholinesterase-induced β-amyloid aggregation inhibitors
European Journal of Medicinal Chemistry 2011.0
Novel tetrahydrocarbazole benzyl pyridine hybrids as potent and selective butryl cholinesterase inhibitors with neuroprotective and β-secretase inhibition activities
European Journal of Medicinal Chemistry 2018.0
Synthesis, Biological Evaluation, and Molecular Modeling of Donepezil and N-[(5-(Benzyloxy)-1-methyl-1H-indol-2-yl)methyl]-N-methylprop-2-yn-1-amine Hybrids as New Multipotent Cholinesterase/Monoamine Oxidase Inhibitors for the Treatment of Alzheimer’s Disease
Journal of Medicinal Chemistry 2011.0
Pyrano[3,2-c]quinoline−6-Chlorotacrine Hybrids as a Novel Family of Acetylcholinesterase- and β-Amyloid-Directed Anti-Alzheimer Compounds
Journal of Medicinal Chemistry 2009.0
Tetrahydrobenzo[h][1,6]naphthyridine-6-chlorotacrine hybrids as a new family of anti-Alzheimer agents targeting β-amyloid, tau, and cholinesterase pathologies
European Journal of Medicinal Chemistry 2014.0
Syntheses of coumarin–tacrine hybrids as dual-site acetylcholinesterase inhibitors and their activity against butylcholinesterase, Aβ aggregation, and β-secretase
Bioorganic &amp; Medicinal Chemistry 2014.0
Design, synthesis and evaluation of novel tacrine-multialkoxybenzene hybrids as dual inhibitors for cholinesterases and amyloid beta aggregation
Bioorganic &amp; Medicinal Chemistry 2011.0
Design and synthesis of tacrine–ferulic acid hybrids as multi-potent anti-Alzheimer drug candidates
Bioorganic &amp; Medicinal Chemistry Letters 2008.0