The atypical chemokine receptor 3 (ACKR3), formerly known as CXC-chemokine receptor 7 (CXCR7), has been postulated to regulate platelet function and thrombus formation. Herein, we report the discovery and development of first-in-class ACKR3 agonists, which demonstrated superagonistic properties with <i>E</i><sub>max</sub> values of up to 160% compared to the endogenous reference ligand CXCL12 in a β-arrestin recruitment assay. Initial in silico screening using an ACKR3 homology model identified two hits, <b>C10</b> (EC<sub>50</sub> 19.1 μM) and <b>C11</b> (EC<sub>50</sub> = 11.4 μM). Based on these hits, extensive structure-activity relationship studies were conducted by synthesis and testing of derivatives. It resulted in the identification of the novel thiadiazolopyrimidinone-based compounds <b>26</b> (LN5972, EC<sub>50</sub> = 3.4 μM) and <b>27</b> (LN6023, EC<sub>50</sub> = 3.5 μM). These compounds are selective for ACKR3 versus CXCR4 and show metabolic stability. In a platelet degranulation assay, these agonists effectively reduced P-selectin expression by up to 97%, suggesting potential candidates for the treatment of platelet-mediated thrombosis.