Expanding the repertoire of methanocarba nucleosides from purinergic signaling to diverse targets

RSC Medicinal Chemistry
2021.0

Abstract

Nucleoside derivatives are well represented as pharmaceuticals due to their druglike physicochemical properties, and some nucleoside drugs are designed to act on receptors. The purinergic signaling pathways for extracellular nucleosides and nucleotides, consisting of adenosine receptors, P2Y/P2X receptors for nucleotides, and enzymes such as adenosine (ribo)kinase, have been extensively studied. A general modification, <i>i.e.</i> a constrained, bicyclic ring system (bicyclo[3.1.0]hexane, also called methanocarba) substituted in place of a furanose ring, can increase nucleoside/nucleotide potency and/or selectivity at purinergic and antiviral targets and in interactions at diverse and unconventional targets. Compared to other common drug discovery scaffolds containing planar rings, methanocarba nucleosides display greater sp3 character (<i>i.e.</i> more favorable as drug-like molecules) and can manifest as sterically-constrained North (N) or South (S) conformations. Initially weak, off-target interactions of (N)-methanocarba adenosine derivatives were detected as leads that were structurally optimized to enhance activity and selectivity toward target proteins that normally do not recognize nucleosides. By this approach, novel modulators for 5HT<sub>2</sub> serotonin and κ-opioid receptors, dopamine (DAT) and ATP-binding cassette (ABC) transporters were found, and previously undetected antiviral activities were revealed. Thus, through methanocarba nucleoside synthesis, structure-activity relationships, and multi-target pharmacology, a robust purinergic receptor scaffold has been repurposed to satisfy the pharmacophoric requirements of various GPCRs, enzymes and transporters.

Knowledge Graph

Similar Paper

Expanding the repertoire of methanocarba nucleosides from purinergic signaling to diverse targets
RSC Medicinal Chemistry 2021.0
Methanocarba Modification of Uracil and Adenine Nucleotides:  High Potency of Northern Ring Conformation at P2Y<sub>1</sub>, P2Y<sub>2</sub>, P2Y<sub>4</sub>, and P2Y<sub>11</sub> but Not P2Y<sub>6</sub> Receptors
Journal of Medicinal Chemistry 2002.0
Methanocarba Analogues of Purine Nucleosides as Potent and Selective Adenosine Receptor Agonists
Journal of Medicinal Chemistry 2000.0
Adenine Nucleotide Analogues Locked in a Northern Methanocarba Conformation:  Enhanced Stability and Potency as P2Y<sub>1</sub> Receptor Agonists
Journal of Medicinal Chemistry 2002.0
Structure-Based Scaffold Repurposing for G Protein-Coupled Receptors: Transformation of Adenosine Derivatives into 5HT<sub>2B</sub>/5HT<sub>2C</sub>Serotonin Receptor Antagonists
Journal of Medicinal Chemistry 2016.0
Design and in Vivo Characterization of A<sub>1</sub> Adenosine Receptor Agonists in the Native Ribose and Conformationally Constrained (N)-Methanocarba Series
Journal of Medicinal Chemistry 2019.0
Scaffold Repurposing of Nucleosides (Adenosine Receptor Agonists): Enhanced Activity at the Human Dopamine and Norepinephrine Sodium Symporters
Journal of Medicinal Chemistry 2017.0
Structure activity relationship of novel antiviral nucleosides against Enterovirus A71
Bioorganic &amp; Medicinal Chemistry Letters 2020.0
Pyrimidine Ribonucleotides with Enhanced Selectivity as P2Y<sub>6</sub> Receptor Agonists: Novel 4-Alkyloxyimino, (S)-Methanocarba, and 5′-Triphosphate γ-Ester Modifications
Journal of Medicinal Chemistry 2010.0
Synthesis and biological evaluation of 5'-sulfamoylated purinyl carbocyclic nucleosides
Journal of Medicinal Chemistry 1992.0