Molecular Recognition in Purinergic Receptors. 2. Diastereoselectivity of the h-P2Y1-Receptor

Journal of Medicinal Chemistry
2004.0

Abstract

In the companion paper, part 1, we described the construction of an improved molecular model for the h-P2Y1 receptor (h-P2Y1-R) and proposed a rational for the stereoelectronic selectivity of the receptor. Here, we extend our studies on the molecular recognition of the h-P2Y1-R to the exploration of the diastereoselectivity of this receptor. For this purpose, we implemented an integrative approach combining synthesis, spectral analysis, biochemical assays, and computational analysis. Specifically, we selected and synthesized novel ATP analogues bearing a chiral center on the phosphate chain. We analyzed the conformation of the chiral ATP analogues in solution by 1H/13C NMR and assigned the absolute configuration of the diastereoisomers. The coordination mode of these analogues with a Mg2+ ion was evaluated by 31P NMR. These chiral analogues were biochemically evaluated and found to be potent h-P2Y1-R ligands. An EC50 difference of ca. 20-fold was observed between the diastereoisomers. Their spectral absolute configuration assignment was confirmed by comparison of the biochemical results to those of ATP-alpha-S diastereoisomers whose chirality is known. Finally, a computational analysis was performed for the elucidation of molecular recognition employing molecular mechanics (docking) studies on the receptor:ligands complexes. On the basis of the current results, we hypothesize that h-P2Y1-R's chiral discrimination originates from the requirement that the nucleotide analogue interacts with a Mg2+ ion within the receptor binding site. This Mg2+ ion is possibly coordinated with both Asp204 and the ATP's alpha, beta, gamma-phosphates in a Lambda configuration.

Knowledge Graph

Similar Paper

Molecular Recognition in Purinergic Receptors. 2. Diastereoselectivity of the h-P2Y<sub>1</sub>-Receptor
Journal of Medicinal Chemistry 2004.0
Molecular dynamics simulation of the P2Y14 receptor. Ligand docking and identification of a putative binding site of the distal hexose moiety
Bioorganic &amp; Medicinal Chemistry Letters 2007.0
Molecular modeling of the human P2Y14 receptor: A template for structure-based design of selective agonist ligands
Bioorganic &amp; Medicinal Chemistry 2015.0
Molecular Recognition of Agonists and Antagonists by the Nucleotide-Activated G Protein-Coupled P2Y<sub>2</sub>Receptor
Journal of Medicinal Chemistry 2017.0
Molecular Modeling of the Human P2Y<sub>2</sub> Receptor and Design of a Selective Agonist, 2‘-Amino-2‘-deoxy-2-thiouridine 5‘-Triphosphate
Journal of Medicinal Chemistry 2007.0
Molecular recognition in the P2Y14 receptor: Probing the structurally permissive terminal sugar moiety of uridine-5′-diphosphoglucose
Bioorganic &amp; Medicinal Chemistry 2009.0
Human P2Y<sub>6</sub> Receptor:  Molecular Modeling Leads to the Rational Design of a Novel Agonist Based on a Unique Conformational Preference
Journal of Medicinal Chemistry 2005.0
Structure−Activity Relationships of Uridine 5‘-Diphosphate Analogues at the Human P2Y<sub>6</sub>Receptor
Journal of Medicinal Chemistry 2006.0
Identification of hydrolytically stable and selective P2Y1 receptor agonists
European Journal of Medicinal Chemistry 2009.0
Adenine Nucleotide Analogues Locked in a Northern Methanocarba Conformation:  Enhanced Stability and Potency as P2Y<sub>1</sub> Receptor Agonists
Journal of Medicinal Chemistry 2002.0