Molecular recognition in the P2Y14 receptor: Probing the structurally permissive terminal sugar moiety of uridine-5′-diphosphoglucose

Bioorganic & Medicinal Chemistry
2009.0

Abstract

The P2Y(14) receptor, a nucleotide signaling protein, is activated by uridine-5'-diphosphoglucose 1 and other uracil nucleotides. We have determined that the glucose moiety of 1 is the most structurally permissive region for designing analogues of this P2Y(14) agonist. For example, the carboxylate group of uridine-5'-diphosphoglucuronic acid proved to be suitable for flexible substitution by chain extension through an amide linkage. Functionalized congeners containing terminal 2-acylaminoethylamides prepared by this strategy retained P2Y(14) activity, and molecular modeling predicted close proximity of this chain to the second extracellular loop of the receptor. In addition, replacement of glucose with other sugars did not diminish P2Y(14) potency. For example, the [5'']ribose derivative had an EC(50) of 0.24muM. Selective monofluorination of the glucose moiety indicated a role for the 2''- and 6''-hydroxyl groups of 1 in receptor recognition. The beta-glucoside was twofold less potent than the native alpha-isomer, but methylene replacement of the 1''-oxygen abolished activity. Replacement of the ribose ring system with cyclopentyl or rigid bicyclo[3.1.0]hexane groups abolished activity. Uridine-5'-diphosphoglucose also activates the P2Y(2) receptor, but the 2-thio analogue and several of the potent modified-glucose analogues were P2Y(14)-selective.

Knowledge Graph

Similar Paper

Molecular recognition in the P2Y14 receptor: Probing the structurally permissive terminal sugar moiety of uridine-5′-diphosphoglucose
Bioorganic & Medicinal Chemistry 2009.0
Structure−Activity Relationship of Uridine 5‘<b>-</b>Diphosphoglucose Analogues as Agonists of the Human P2Y<sub>14</sub> Receptor
Journal of Medicinal Chemistry 2007.0
Human P2Y<sub>14</sub>Receptor Agonists: Truncation of the Hexose Moiety of Uridine-5′-Diphosphoglucose and Its Replacement with Alkyl and Aryl Groups
Journal of Medicinal Chemistry 2010.0
Molecular modeling of the human P2Y14 receptor: A template for structure-based design of selective agonist ligands
Bioorganic &amp; Medicinal Chemistry 2015.0
Structure−Activity Relationships of Uridine 5‘-Diphosphate Analogues at the Human P2Y<sub>6</sub>Receptor
Journal of Medicinal Chemistry 2006.0
Molecular dynamics simulation of the P2Y14 receptor. Ligand docking and identification of a putative binding site of the distal hexose moiety
Bioorganic &amp; Medicinal Chemistry Letters 2007.0
Molecular Modeling of the Human P2Y<sub>2</sub> Receptor and Design of a Selective Agonist, 2‘-Amino-2‘-deoxy-2-thiouridine 5‘-Triphosphate
Journal of Medicinal Chemistry 2007.0
5-OMe-UDP is a Potent and Selective P2Y<sub>6</sub>-Receptor Agonist
Journal of Medicinal Chemistry 2010.0
Synthesis and potency of novel uracil nucleotides and derivatives as P2Y2 and P2Y6 receptor agonists
Bioorganic &amp; Medicinal Chemistry 2008.0
Pyrimidine Ribonucleotides with Enhanced Selectivity as P2Y<sub>6</sub> Receptor Agonists: Novel 4-Alkyloxyimino, (S)-Methanocarba, and 5′-Triphosphate γ-Ester Modifications
Journal of Medicinal Chemistry 2010.0