Structure−Activity Relationship of Uridine 5‘-Diphosphoglucose Analogues as Agonists of the Human P2Y14 Receptor

Journal of Medicinal Chemistry
2007.0

Abstract

UDP-glucose (UDPG) and derivatives are naturally occurring agonists of the Gi protein-coupled P2Y14 receptor, which occurs in the immune system. We synthesized and characterized pharmacologically novel analogues of UDPG modified on the nucleobase, ribose, and glucose moieties, as the basis for designing novel ligands in conjunction with modeling. The recombinant human P2Y14 receptor expressed in COS-7 cells was coupled to phospholipase C through an engineered Galpha-q/i protein. Most modifications of the uracil or ribose moieties abolished activity; this is among the least permissive P2Y receptors. However, a 2-thiouracil modification in 15 (EC50 49 +/- 2 nM) enhanced the potency of UDPG (but not UDP-glucuronic acid) by 7-fold. 4-Thio analogue 13 was equipotent to UDPG, but S-alkylation was detrimental. Compound 15 was docked in a rhodposin-based receptor homology model, which correctly predicted potent agonism of UDP-fructose, UDP-mannose, and UDP-inositol. The hexose moiety of UDPG interacts with multiple H-bonding and charged residues and provides a fertile region for agonist modification.

Knowledge Graph

Similar Paper

Structure−Activity Relationship of Uridine 5‘<b>-</b>Diphosphoglucose Analogues as Agonists of the Human P2Y<sub>14</sub> Receptor
Journal of Medicinal Chemistry 2007.0
Human P2Y<sub>14</sub>Receptor Agonists: Truncation of the Hexose Moiety of Uridine-5′-Diphosphoglucose and Its Replacement with Alkyl and Aryl Groups
Journal of Medicinal Chemistry 2010.0
Molecular recognition in the P2Y14 receptor: Probing the structurally permissive terminal sugar moiety of uridine-5′-diphosphoglucose
Bioorganic &amp; Medicinal Chemistry 2009.0
Molecular modeling of the human P2Y14 receptor: A template for structure-based design of selective agonist ligands
Bioorganic &amp; Medicinal Chemistry 2015.0
Structure−Activity Relationships of Uridine 5‘-Diphosphate Analogues at the Human P2Y<sub>6</sub>Receptor
Journal of Medicinal Chemistry 2006.0
Molecular dynamics simulation of the P2Y14 receptor. Ligand docking and identification of a putative binding site of the distal hexose moiety
Bioorganic &amp; Medicinal Chemistry Letters 2007.0
Synthesis and potency of novel uracil nucleotides and derivatives as P2Y2 and P2Y6 receptor agonists
Bioorganic &amp; Medicinal Chemistry 2008.0
Synthesis and Structure−Activity Relationships of Uracil Nucleotide Derivatives and Analogues as Agonists at Human P2Y<sub>2</sub>, P2Y<sub>4</sub>, and P2Y<sub>6</sub>Receptors
Journal of Medicinal Chemistry 2006.0
5-OMe-UDP is a Potent and Selective P2Y<sub>6</sub>-Receptor Agonist
Journal of Medicinal Chemistry 2010.0
Molecular Modeling of the Human P2Y<sub>2</sub> Receptor and Design of a Selective Agonist, 2‘-Amino-2‘-deoxy-2-thiouridine 5‘-Triphosphate
Journal of Medicinal Chemistry 2007.0