Human P2Y14Receptor Agonists: Truncation of the Hexose Moiety of Uridine-5′-Diphosphoglucose and Its Replacement with Alkyl and Aryl Groups

Journal of Medicinal Chemistry
2010.0

Abstract

Uridine-5'-diphosphoglucose (UDPG) activates the P2Y(14) receptor, a neuroimmune system GPCR. P2Y(14) receptor tolerates glucose substitution with small alkyl or aryl groups or its truncation to uridine 5'-diphosphate (UDP), a full agonist at the human P2Y(14) receptor expressed in HEK-293 cells. 2-Thiouracil derivatives displayed selectivity for activation of the human P2Y(14) vs the P2Y(6) receptor, such as 2-thio-UDP 4 (EC(50) = 1.92 nM at P2Y(14), 224-fold selectivity vs P2Y(6)) and its beta-propyloxy ester 18. EC(50) values of the beta-methyl ester of UDP and its 2-thio analogue were 2730 and 56 nM, respectively. beta-tert-Butyl ester of 4 was 11-fold more potent than UDPG, but beta-aryloxy or larger, branched beta-alkyl esters, such as cyclohexyl, were less potent. Ribose replacement of UDP with a rigid North or South methanocarba (bicyclo[3.1.0]hexane) group abolished P2Y(14) receptor agonist activity. alpha,beta-Methylene and difluoromethylene groups were well tolerated at the P2Y(14) receptor and are expected to provide enhanced stability in biological systems. alpha,beta-Methylene-2-thio-UDP 11 (EC(50) = 0.92 nM) was 2160-fold selective versus P2Y(6). Thus, these nucleotides and their congeners may serve as important pharmacological probes for the detection and characterization of the P2Y(14) receptor.

Knowledge Graph

Similar Paper

Human P2Y<sub>14</sub>Receptor Agonists: Truncation of the Hexose Moiety of Uridine-5′-Diphosphoglucose and Its Replacement with Alkyl and Aryl Groups
Journal of Medicinal Chemistry 2010.0
Structure−Activity Relationship of Uridine 5‘<b>-</b>Diphosphoglucose Analogues as Agonists of the Human P2Y<sub>14</sub> Receptor
Journal of Medicinal Chemistry 2007.0
Molecular recognition in the P2Y14 receptor: Probing the structurally permissive terminal sugar moiety of uridine-5′-diphosphoglucose
Bioorganic &amp; Medicinal Chemistry 2009.0
Structural Modifications of UMP, UDP, and UTP Leading to Subtype-Selective Agonists for P2Y<sub>2</sub>, P2Y<sub>4</sub>, and P2Y<sub>6</sub> Receptors
Journal of Medicinal Chemistry 2011.0
Synthesis and potency of novel uracil nucleotides and derivatives as P2Y2 and P2Y6 receptor agonists
Bioorganic &amp; Medicinal Chemistry 2008.0
Synthesis and Structure−Activity Relationships of Uracil Nucleotide Derivatives and Analogues as Agonists at Human P2Y<sub>2</sub>, P2Y<sub>4</sub>, and P2Y<sub>6</sub>Receptors
Journal of Medicinal Chemistry 2006.0
Pyrimidine Ribonucleotides with Enhanced Selectivity as P2Y<sub>6</sub> Receptor Agonists: Novel 4-Alkyloxyimino, (S)-Methanocarba, and 5′-Triphosphate γ-Ester Modifications
Journal of Medicinal Chemistry 2010.0
Structure−Activity Relationships of Uridine 5‘-Diphosphate Analogues at the Human P2Y<sub>6</sub>Receptor
Journal of Medicinal Chemistry 2006.0
Molecular modeling of the human P2Y14 receptor: A template for structure-based design of selective agonist ligands
Bioorganic &amp; Medicinal Chemistry 2015.0
Pyrimidine Nucleotides with 4-Alkyloxyimino and Terminal Tetraphosphate δ-Ester Modifications as Selective Agonists of the P2Y<sub>4</sub>Receptor
Journal of Medicinal Chemistry 2011.0