Evaluation of (Z)-2-((1-benzyl-1H-indol-3-yl)methylene)-quinuclidin-3-one analogues as novel, high affinity ligands for CB1 and CB2 cannabinoid receptors

Bioorganic & Medicinal Chemistry Letters
2013.0

Abstract

A small library of N-benzyl indolequinuclidinone (IQD) analogs has been identified as a novel class of cannabinoid ligands. The affinity and selectivity of these IQDs for the two established cannabinoid receptor subtypes, CB1 and CB2, was evaluated. Compounds 8 (R=R(2)=H, R(1)=F) and 13 (R=COOCH3, R(1)=R(2)=H) exhibited high affinity for CB2 receptors with Ki values of 1.33 and 2.50 nM, respectively, and had lower affinities for the CB1 receptor (Ki values of 9.23 and 85.7 nM, respectively). Compound 13 had the highest selectivity of all the compounds examined, and represents a potent cannabinoid ligand with 34-times greater selectivity for CB2R over CB1R. These findings are significant for future drug development, given recent reports demonstrating beneficial use of cannabinoid ligands in a wide variety of human disease states including drug abuse, depression, schizophrenia, inflammation, chronic pain, obesity, osteoporosis and cancer.

Knowledge Graph

Similar Paper

Evaluation of (Z)-2-((1-benzyl-1H-indol-3-yl)methylene)-quinuclidin-3-one analogues as novel, high affinity ligands for CB1 and CB2 cannabinoid receptors
Bioorganic & Medicinal Chemistry Letters 2013.0
New class of potent ligands for the human peripheral cannabinoid receptor
Bioorganic & Medicinal Chemistry Letters 1996.0
New 1,8-naphthyridine and quinoline derivatives as CB2 selective agonists
Bioorganic & Medicinal Chemistry Letters 2007.0
Design, Synthesis, and Biological Evaluation of New 1,8-Naphthyridin-4(1H)-on-3-carboxamide and Quinolin-4(1H)-on-3-carboxamide Derivatives as CB<sub>2</sub>Selective Agonists
Journal of Medicinal Chemistry 2006.0
Novel 4-Oxo-1,4-dihydroquinoline-3-carboxamide Derivatives as New CB<sub>2</sub>Cannabinoid Receptors Agonists:  Synthesis, Pharmacological Properties and Molecular Modeling
Journal of Medicinal Chemistry 2006.0
7-Oxo-[1,4]oxazino[2,3,4-ij]quinoline-6-carboxamides as Selective CB<sub>2</sub>Cannabinoid Receptor Ligands: Structural Investigations around a Novel Class of Full Agonists
Journal of Medicinal Chemistry 2012.0
Sulfamoyl benzamides as novel CB2 cannabinoid receptor ligands
Bioorganic &amp; Medicinal Chemistry Letters 2008.0
Novel benzimidazole derivatives as selective CB2 agonists
Bioorganic &amp; Medicinal Chemistry Letters 2008.0
Novel indole and azaindole (pyrrolopyridine) cannabinoid (CB) receptor agonists: Design, synthesis, structure–activity relationships, physicochemical properties and biological activity
European Journal of Medicinal Chemistry 2011.0
Rational Design and Synthesis of an Orally Active Indolopyridone as a Novel Conformationally Constrained Cannabinoid Ligand Possessing Antiinflammatory Properties
Journal of Medicinal Chemistry 2003.0