Rescuing the CFTR protein function: Introducing 1,3,4-oxadiazoles as translational readthrough inducing drugs

European Journal of Medicinal Chemistry
2018.0

Abstract

Nonsense mutations in the CFTR gene prematurely terminate translation of the CFTR mRNA leading to the production of a truncated protein that lacks normal function causing a more severe form of the cystic fibrosis (CF) disease. About 10% of patients affected by CF show a nonsense mutation. A potential treatment of this alteration is to promote translational readthrough of premature termination codons (PTCs) by Translational Readthrough Inducing Drugs (TRIDs) such as PTC124. In this context we aimed to compare the activity of PTC124 with analogues differing in the heteroatoms position in the central heterocyclic core. By a validated protocol consisting of computational screening, synthesis and biological tests we identified a new small molecule (NV2445) with 1,3,4-oxadiazole core showing a high readthrough activity. Moreover, we evaluated the CFTR functionality after NV2445 treatment in CF model systems and in cells expressing a nonsense-CFTR-mRNA. Finally, we studied the supramolecular interactions between TRIDs and CFTR-mRNA to assess the biological target/mechanism and compared the predicted ADME properties of NV2445 and PTC124.

Knowledge Graph

Similar Paper

Rescuing the CFTR protein function: Introducing 1,3,4-oxadiazoles as translational readthrough inducing drugs
European Journal of Medicinal Chemistry 2018.0
PTC124 targets genetic disorders caused by nonsense mutations
Nature 2007.0
Cystic Fibrosis: A New Target for 4-Imidazo[2,1-b]thiazole-1,4-dihydropyridines
Journal of Medicinal Chemistry 2011.0
ΔF508-CFTR correctors: Synthesis and evaluation of thiazole-tethered imidazolones, oxazoles, oxadiazoles, and thiadiazoles
Bioorganic & Medicinal Chemistry Letters 2014.0
Discovery and SAR of 4-aminopyrrolidine-2-carboxylic acid correctors of CFTR for the treatment of cystic fibrosis
Bioorganic & Medicinal Chemistry Letters 2022.0
Synthesis and structure–activity relationship of aminoarylthiazole derivatives as correctors of the chloride transport defect in cystic fibrosis
European Journal of Medicinal Chemistry 2015.0
Ligand-based design, in silico ADME-Tox filtering, synthesis and biological evaluation to discover new soluble 1,4-DHP-based CFTR activators
European Journal of Medicinal Chemistry 2012.0
Guanidino quinazolines and pyrimidines promote readthrough of premature termination codons in cells with native nonsense mutations
Bioorganic & Medicinal Chemistry Letters 2022.0
Repairing faulty genes by aminoglycosides: Development of new derivatives of geneticin (G418) with enhanced suppression of diseases-causing nonsense mutations
Bioorganic & Medicinal Chemistry 2010.0
Potent s-cis-Locked Bithiazole Correctors of ΔF508 Cystic Fibrosis Transmembrane Conductance Regulator Cellular Processing for Cystic Fibrosis Therapy
Journal of Medicinal Chemistry 2008.0