A comprehensive study on the 5-hydroxytryptamine3A receptor binding of agonists serotonin and m-chlorophenylbiguanidine

Bioorganic & Medicinal Chemistry
2009.0

Abstract

Serotonin type 3 receptors (5-HT(3)R) are members of the ligand gated ion channel receptor family. In this study, the interactions of the agonists serotonin (5-HT) and m-chlorophenylbiguanidine (mCPBG) at the binding site of the 5-HT(3A)R were investigated at an atomic level. Site-directed mutagenesis studies in Loop B and E along with our earlier published results from mutations within Loops A, C, and D provide comprehensive data on the interaction of 5-HT and mCPBG with 5-HT(3A)Rs. Using this data we have constructed a refined homology model of the 5-HT(3A)R that considers all of the available experimental data. 5-HT and mCPBG were docked into the newly constructed homology model and the amino acid residues critical in binding of these agonists were compared and analyzed. Our docking results reveal many similar binding interactions for 5-HT and mCPBG. Namely, residues THR181, TRP183, PHE226, ILE228, TYR234 and GLU129 were all found to play key roles in binding of both 5-HT and mCPBG. However, the results also revealed two important differences that exist between the interactions of the two agonists. In our model, a hydrogen bond is formed between the indole hydrogen of 5-HT and the residue TYR153. This interaction is not present in the case of mCPBG. Conversely, a hydrogen bond exists between SER182 and a protonated nitrogen of mCPBG, which does not exist in 5-HT. Our modeling results were found to be in accordance with experimental data.

Knowledge Graph

Similar Paper

A comprehensive study on the 5-hydroxytryptamine3A receptor binding of agonists serotonin and m-chlorophenylbiguanidine
Bioorganic & Medicinal Chemistry 2009.0
Characterization of the 5-HT<sub>7</sub>Receptor. Determination of the Pharmacophore for 5-HT<sub>7</sub>Receptor Agonism and CoMFA-Based Modeling of the Agonist Binding Site
Journal of Medicinal Chemistry 2003.0
Homology Modeling of Metabotropic Glutamate Receptors. (mGluRs) Structural Motifs Affecting Binding Modes and Pharmacological Profile of mGluR1 Agonists and Competitive Antagonists
Journal of Medicinal Chemistry 1996.0
Structure−Activity Relationships for the Binding of Arylpiperazines and Arylbiguanides at 5-HT<sub>3</sub>Serotonin Receptors
Journal of Medicinal Chemistry 1996.0
1-(2-Aminoethyl)-3-methyl-8,9-dihydropyrano[3,2-e]indole: a rotationally restricted phenolic analog of the neurotransmitter serotonin and agonist selective for serotonin (5-HT2-type) receptors
Journal of Medicinal Chemistry 1992.0
Affinity of aporphines for the human 5-HT2A receptor: Insights from homology modeling and molecular docking studies
Bioorganic &amp; Medicinal Chemistry 2010.0
Electrostatic Potential Surfaces of 5-HT3R Agonists Suggest Accessory Cation–π Site Adjacent to Agonist Binding Domain
Bioorganic &amp; Medicinal Chemistry Letters 2002.0
Novel Potent and Selective Central 5-HT<sub>3</sub> Receptor Ligands Provided with Different Intrinsic Efficacy. 1. Mapping the Central 5-HT<sub>3</sub> Receptor Binding Site by Arylpiperazine Derivatives
Journal of Medicinal Chemistry 1998.0
Pyrroloquinoxaline Derivatives as High-Affinity and Selective 5-HT<sub>3</sub> Receptor Agonists:  Synthesis, Further Structure−Activity Relationships, and Biological Studies
Journal of Medicinal Chemistry 1999.0
Mutagenesis Reveals Structure−Activity Parallels between Human A<sub>2A</sub>Adenosine Receptors and Biogenic Amine G Protein-Coupled Receptors
Journal of Medicinal Chemistry 1997.0